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Abstract: A novel robust control law with finite time convergence for rigid robotic manipulators
is proposed in this paper. The whole control process is divided into two phases, i.e., the
error correction phase and the steady tracking phase. Firstly, a novel time-varying sliding
mode control (TVSMC) method is developed in the first phase to ensure the tracking error
converge to zero at the desired time. Subsequently, the nonsingular terminal sliding mode
control (NTSMC) technique is employed to keep the tracking error maintaining zero during
the second phase. The associated control commands are free from singularity and convenient for
practical implementation. Besides, the convergence rate can be tuned via appropriate parameter
adjustment. By the virtue of global sliding mode, the system is global robust against the external
disturbances and parametric uncertainties. Numerical simulations are presented to validate the
effectiveness of the proposed control law.

Keywords: robotic manipulators, finite time, time-varying sliding mode control (TVSMC),
nonsingular terminal sliding mode control (NTSMC), global robust.

1. INTRODUCTION

Robotic manipulators have been widely applied in modern
industry owing to their advantages such as higher load-to-
weight ratio, less energy consumption and higher speed
(Wang et al. (2011)). In practical application, however, a
rigid robotic manipulator is a kind of uncertain nonlinear
multi-input multi-output (MIMO) system which suffers
from unmodeled dynamics, unstructured uncertainties and
external disturbances, and thus it is not appropriate to
derive the control strategy completely on the basis of the
plant model. As a consequence, the controller design for a
robotic manipulator is really a challenging issue.

There are basically two philosophies for controlling a
robotic manipulator with nonlinear and uncertain behav-
iors (Khan et al. (2012)), i.e., adaptive control(Berghuis
et al. (1993), Ortega and Spong (1989), Slotine and Li
(1989)) and robust control. To achieve the best perfor-
mance, the former tries to identify the uncertain parame-
ters of the system while the latter possesses fixed structure
which is insensitive to the parameter variation. The robust
control technique has been widely studied in the past
decades because of the ease of design due to less informa-
tion demand. As an elementary approach to robust control,
the sliding mode control (SMC) methodology can offer
many good properties, such as insensitivity to parameter
variation, external disturbance rejection, and fast dynamic
response (Slotine and Li (1991)). Traditional SMC can
only guarantee asymptotic stability which implies that the
tracking error converge to zero as time goes to infinity. In
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real time implementation, however, infinite time conver-
gence may not be enough.

Finite time control always provides superior properties,
such as faster convergence rate, higher accuracy, better
robustness against uncertainties and disturbance rejection
property (Wang et al. (2012), Du et al. (2011)). To achieve
finite time convergence of uncertain dynamic systems, the
terminal sliding mode control (TSMC) is developed in Wu
and Yu (1998). This method is further extended in Yu and
Man (2002) to achieve a faster convergence rate. However,
singularity may be experienced during the implementa-
tion of TSMC. To overcome this drawback, a nonsingu-
lar terminal sliding mode control (NTSMC) technique is
presented in Feng et al. (2002). This strategy is able to
get rid of the singularity without adding any extra proce-
dures. Afterwards, this method is further investigated in
Yu et al. (2005) to derive a new class of continuous TSM
controllers. In recent years, artificial intelligence theory has
been integrated into the TSMC design. The fuzzy logic
controller is incorporated into TSMC in Li and Huang
(2010) to retain the advantages of TSMC while alleviating
the chattering phenomenon. In addition, a new adaptive
TSMC is presented in Neila and Tarak (2011) to estimate
the bounds of uncertainties, and meanwhile, eliminating
the chattering effect.

The finite time control problem has seen a large amount of
attention, in contrast there has been a negligible amount of
work performed towards solving the fixed time convergence
control problem. As far as the authors know, the only
published work coping with this issue can be found in
Laghrouche et al. (2007). The associated controller consist
of two parts, the first part is the integral sliding mode (IS-
M) controller to counteract the lumped uncertainty while
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the other part is a kind of optimal feedback control law to
guarantee a desired finite time convergence. However, this
control law is just designed for single-input single-output
(SISO) systems.

This paper investigates the finite time control problem
for the rigid robotic manipulators which belongs to the
category of MIMO systems. A novel robust control strat-
egy which is synthesized with time-varying sliding mode
control (TVSMC) theory and the NTSMC technique is
introduced. This strategy features in three characteristics:
First, the time convergence can be chosen in advance which
implies the tracking error would converge to zero at a
desired finite time. Second, the convergence rate can be
tuned by parameter adjusting. Third, by the virtue of
global sliding mode, the controlled system is global robust
against parametric uncertainty and external disturbance.
In addition, it should be noted that the zero velocity error
assumption at the initial time is not required, which is
a necessity in some previous work such as Bartoszewicz
(1996) and Cong et al. (2012).

2. MATHEMATICAL MODEL AND PROBLEM
STATEMENT

2.1 Mathematical model of rigid robotic manipulators

Consider a rigid r-link robotic manipulator described by

M(q)q̈ + C(q, q̇)q̇ +G(q) = u+ ud (1)

where q ∈ Rr is the vector of joint angular position,
M(q) ∈ Rr×r is the symmetric positive definite inertia
matrix, C(q, q̇) ∈ Rr×r is the Coriolis and centrifugal
forces matrix, G(q) ∈ Rr is the gravitational torque,
u ∈ Rr is the vector of input torque, and ud ∈ Rr is the
vector of bounded external disturbance.

The uncertainties of the rigid robotic manipulator is as-
sumed, i.e.:

M(q) = M0(q) + ∆M(q)

C(q, q̇) = C0(q, q̇) + ∆C(q, q̇)

G(q) = G0(q) + ∆G(q)

where M0(q), C0(q, q̇), G0(q) represent the nominal terms
and ∆M(q), ∆C(q, q̇), ∆G(q) stand for the uncertain
terms. Then, the system dynamics in (1) can be rewritten
in the following form

M0(q)q̈ + C0(q, q̇)q̇ +G0(q) = u+ d (2)

where d is regarded as the lumped uncertainty which can
be expressed by

d = ud −∆M(q)q̈ −∆C(q, q̇)q̇ −∆G(q) (3)

It can be observed from (2) that the lumped uncertainty
is matched to the controlled system. For further analysis,
the following assumptions are made:

||M−1
0 (q)|| ≤ ρ1, ||d|| ≤ ρ2 + ρ3||q||+ ρ4||q̇||

where ρ1, ρ2, ρ3, ρ4 are positive numbers. In the later dis-
cussions, for the sake of notational clarity, M(q), C(q, q̇),
G(q), M0(q), C0(q, q̇) and G0(q) are replaced by M , C, G,
M0, C0 and G0, respectively.

2.2 Problem statement

The finite time tracking control problem of the system in
(2) is addressed in this paper. Assume that qd ∈ Rr is
the desired angular trajectory and q̇d is the derivative of
qd. The control objective is to design a controller u for
the robotic manipulator, such that the tracking errors of
the angular position q and its derivation q̇ can converge to
zero at a predetermined time tf in the presence of external
disturbance as well as parametric uncertainty. To sum up,
a controller needs to be derived such that

q − qd = q̇ − q̇d = 0, t ≥ tf (4)

3. MAIN RESULTS

In this section, a novel finite time control strategy on the
basis of SMC is proposed. The whole control action is
divided into two phases, i.e., the error correction phase
and the steady tracking phase. A novel TVSMC approach
is first designed for the first phase to drive the tracking
errors to zero at a desired finite time. Then, the NTSMC
methodology is employed in the second phase to keep the
tracking errors at zero for the rest of the time.

3.1 A novel TVSMC algorithm

Firstly, the tracking angular error and tracking velocity
error are defined as follows:

q̃ = q − qd, ˙̃q = q̇ − q̇d (5)

Then, a new variable is designed as

σ = (tf − t) ˙̃q + n(1− 1

eq̃
) (6)

where n is a positive constant and tf is the desired time
at which the tracking errors converge to zero.

Theorem 1. Suppose that 0 ≤ t1 < tf and n > 1. If σ

remains zero from t1 onwards, q̃ and ˙̃q will both go to zero
exactly at the time t = tf .

Proof. From σ = 0, one gets

˙̃q =
dq̃

dt
= −eq̃ − 1

eq̃
n

tf − t
(7)

Rearranging variables, (7) can be rewritten as

eq̃

eq̃ − 1
dq̃ = − n

tf − t
dt (8)

Assume that the initial state of (8) is (t1, q̃1). Then,
integrating (8) from (t1, q̃1) to (t, q̃) yields∫ q̃

q̃1

eq̃

eq̃ − 1
dq̃ = −

∫ t

t1

n

tf − t
dt

After some algebra, the following result can be derived

eq̃ = 1 +
eq̃1 − 1

(tf − t1)n
(tf − t)n

As a consequence, the analytical expression of q̃ can be
obtained

q̃ = ln(1 + b(tf − t)n) (9)

where b = eq̃1−1
(tf−t1)n

∈ Rr is a constant vector. Then,

differentiating q̃ with respect to t, yielding

˙̃q =
−bn(tf − t)n−1

1 + b(tf − t)n
(10)
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From (9) and (10), it can be easily concluded that both q̃

and ˙̃q will converge to zero at t = tf as long as the value
of n is larger than 1.
The proof is completed.

The above theorem reveals that the fixed time convergence
can be guaranteed as long as σ = 0 is reached at some
finite amount of time before tf . For t > tf , however, the
steady tracking can not be realized by constraining σ to
zero. Such conclusion can be drawn from (9) and (10)
which imply the tracking errors would keep increasing from
tf onwards.

Note that at the time when the control process is initiated,
the tracking errors, i.e., q̃(0) and ˙̃q(0), are generally such
that σ = 0 is not satisfied. As a consequence, a reasonable
controller u requires to be designed such that σ can be
directed toward and constrained at zero.

Such design objective can be achieved by integrating a
time-varying term into (6) and the associated time-varying
sliding mode function is developed as

S1 = σ + α(t) (11)

where α(t) is the time-varying function with the initial val-
ue α0 and final value αf satisfying the following relations:

α0 = −σ(0), αf = 0, α̇f = 0 (12)

As to the selection of α(t), different expressions exist in
the published literature. Here, the following truncated
function is employed (Bartoszewicz (1995, 1996)).

α(t) =

{
At2 +Bt+D t ≤ T

0 t > T
(13)

where T is the switching time. In accordance with (12),
the parameter vectors A, B, D ∈ Rr can be determined as
follows.

D = −σ(0), A =
D

T 2
, B = −2AT (14)

Theorem 2. For the system characterized by (2), by choos-
ing the TVSMC law with the form of (15):

u =
M0

tf − t

[
˙̃q + (tf − t)q̈d −

n ˙̃q

eq̃

−
{
2At+B t ≤ T

0 t > T

]
+ C0q̇ +G0 − ηM0sgn(S1),

η > ||M0
−1d||max, 0 < T < tf , n > 1

(15)

the tracking errors q̃ and ˙̃q will both converge to zero as
the time goes to tf .

Proof. Defining the following positive definite Lyapunov
function:

V1 =
1

2
ST
1 S1 (16)

The time derivative of V1 can be found as

V̇1 = ST
1 Ṡ1

= ST
1

[
− ˙̃q + (tf − t)M−1

0 (u+ d− C0q̇ −G0)

− (tf − t)q̈d +
n ˙̃q

eq̃
+

{
2At+B t ≤ T

0 t > T

] (17)

Then, substituting the control law (15) into (17), one gets

V̇1 = ST
1 (tf − t)M−1

0 (−ηM0sgn(S1) + d)

≤ −(tf − t)(η − ||M0
−1d||max)|S1| ≤ 0

(18)

Apparently, for any S1(t) ∈ Rr, V1 is nonincreasing. As a
consequence, one gets V1(t) ≤ V1(0). Since S1(0) = 0, it
can be easily drawn that V1(t) ≤ 0. On the other hand,
according to (16), we have V1(t) ≥ 0. From the above
analysis, we can conclude that V1 ≡ 0 for t ∈ [0, tf ].

Consider the time-varying term α(t) reaches zero at t = T ,
the value of σ will maintain zero from the time T onwards.
According to Theorem 1, the tracking errors q̃ and ˙̃q will
both go to zero as the time goes to tf .
The proof is completed.

Remark 3. The choices of T and tf , from a theoretical
point of view, are not limited provided that 0 < T < tf <
∞. It should be noted, however, high control amplitude
may be encountered if the values of T and tf are set too
small. As a result, the physical limits should be taken into
consideration in practical implementation.

Remark 4. It can be easily observed that the term tf − t
appears in the denominator of the control law (15), which
would give rise to a singularity at the time t = tf . Since
the value of α(t) will turn to zero after T , the associated
control effort will changed into the following form:

u = M0

(
q̈d + (1− n

eq̃
)

˙̃q

tf − t

)
+ C0q̇ +G0 − ηM0sgn(S1)

(19)
Note that σ maintains zero from T to tf , according to

Theorem 1, the system state ˙̃q possesses the analytic
solution as expressed in (10), which, on substitution in
(19), one gets

u = M0

(
q̈d − (1− n

eq̃
)
bn(tf − t)n−2

1 + b(tf − t)n

)
+ C0q̇ +G0 − ηM0sgn(S1)

(20)

Consequently, the singular problem can be avoided by
setting n > 2.

Remark 5. Since the trajectories of the tracking errors,
i.e., q̃ and ˙̃q, are expressed in (9) and (10) as the time goes
close to tf . The following results can be easily achieved:

lim
t→tf

q̃ = lim
t→tf

ln(1 + b(tf − t)n) = b(tf − t)n

lim
t→tf

˙̃q = lim
t→tf

−bn(tf − t)n−1

1 + b(tf − t)n
= −bn(tf − t)n−1

(21)

Consequently, q̃ and ˙̃q perform certain behaviors as t → tf .
Besides, it can be further concluded that the convergence
rate can be tuned by adjusting the value of n. The larger
n is, the faster convergence rate will be.

3.2 NTSMC strategy

By adopting the TVSMC algorithm presented in section
3.1, the tracking errors are able to converge to zero at the
desired time tf . However, they can not be kept on zero
for t > tf due to the inherent properties of this method.
Therefore, the NTSMC strategy is proposed in this section
to fulfill this requirement.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7338



The non-singular terminal sliding function is described as
follows (Feng et al. (2002)):

S2 = q̃ +K| ˙̃q|p1/p2sgn( ˙̃q) (22)

whereK > 0 and p1 and p2 are positive odd integers, which
satisfy p2 < p1 < 2p2. For the sake of notational clarity,
we will denote p1/p2 by β. Then, the time derivative of S2

is given by:

Ṡ2 = ˙̃q +Kβ| ˙̃q|β−1 ¨̃q

= ˙̃q +Kβ| ˙̃q|β−1
(
M−1

0 (u+ d− C0q̇ −G0)− q̈d
) (23)

Since q̃(tf ) = ˙̃q(tf ) = 0, it can be obtained from (22) and

(23) that both S2 and Ṡ2 would be zero at that instant.
Besides, consider (11), it is obvious that S1(tf ) = 0. The
derivative of S1 can be obtained as

Ṡ1 = − ˙̃q + (tf − t)¨̃q +
n ˙̃q

eq̃
+

{
2At+B t ≤ T

0 t > T

From the above equation, we have Ṡ1(tf ) = 0. Conse-
quently, it can be concluded that the transition between
the two sliding surfaces (i.e. S1 and S2) are smooth.

Theorem 6. For the system in (2), by adopting the
TVSMC algorithm in (15) for t ∈ [0, tf ] and the NTSMC
controller presented in (24) for t > tf ,

u = M0

(
q̈d −

˙̃q

Kβ| ˙̃q|β−1

)
+ C0q̇ +G0

− kM0sgn(S2), k > ||M0
−1d||max

(24)

the following conclusions can be drawn:
(1) The closed loop system is global robust against the
lump uncertainty;
(2) The values of q̃ and ˙̃q will converge to zero at tf and
maintain thereafter.

Proof. Let us consider the following positive defined
Lyapunov function:

V2 =
1

2
ST
2 S2 (25)

Differentiate V2 with respect to t and substitute (24) into
the result, yielding:

V̇2 = ST
2 Ṡ2

= ST
2 (Kβ| ˙̃q|β−1M−1

0 (−kM0sgn(S2) + d))

≤ −Kβ| ˙̃q|β−1(k − ||M0
−1d||max)|S2| ≤ 0

(26)

Similar to the analysis in the proof of Theorem 2, we can
conclude that S2 ≡ 0 for t > tf . Besides, according to
Theorem 2, we have S1 ≡ 0 for t ∈ [0, tf ]. Consequently,
the global robustness of the system is guaranteed.

Furthermore, the following nonlinear differential equation
can be determined from S2 = 0

˙̃q = −K1q̃
β1 (27)

where β1 = 1/β and K1 = ( 1
K )1/β . It has been described

in Zak (1988, 1989) that q̃ = 0 is the terminal attractor

of the system (27). Since q̃(tf ) = ˙̃q(tf ) = 0 , the tracking

errors q̃ and ˙̃q would maintain zero for t > tf by employing
the control law (24).
The proof is completed.

It should be noted that the NTSMC strategy proposed
in this paper doesn’t utilize the finite-time convergence

property. The tracking errors, which have already been
driven to zero at the end of the TVSMC control process,
just need to be kept at zero during the NTSMC control
action.

Theorem 7. Although two different control strategies are
used, the control effort is continuous at tf as long as n > 2
is satisfied.

Proof. According to Remark 4, the TVSMC control effort
at tf can be expressed by (20). If n > 2, the associated
control effort can be simplified as

u = M0q̈d + C0q̇ +G0 (28)

On the other hand, the NTSMC control input is presented
in (24). Since ˙̃q = 0 at t = tf and 1 < β < 2, we can

conclude that
˙̃q

Kβ| ˙̃q|β−1 = 0. Consequently, (24) can be

described as
u = M0q̈d + C0q̇ +G0 (29)

From (28) and (29), it can be easily drawn that the control
effort is continuous at tf .
The proof is completed.

Since the system states are kept on the sliding surface for
the whole control action, global chattering problem would
be experienced. To solve this problem, the continuous
approximation technique is utilized in this paper. Consider
the following saturation function for example,

sat(S) =
S

|S|+ ϵ
(30)

where ϵ is the boundary layer thickness. The chattering
will be suppressed if the boundary layer is set enough thick.
However, the static error would be larger with a thicker
boundary layer. As a consequence, there is a trade-off in
the selection of ϵ.

To sum up, the sliding mode function for the robotic ma-
nipulators is designed as the following truncated function:

S =

{
(tf − t) ˙̃q + n(1− 1

eq̃
) + α(t) 0 ≤ t ≤ tf

q̃ +K| ˙̃q|βsgn( ˙̃q) t > tf
(31)

Correspondingly, the control effort is constructed as

u =


M0

tf − t
E + C0q̇ +G0 − υM0sat(S) 0 ≤ t ≤ tf

M0F + C0q̇ +G0 − υM0sat(S) t > tf
(32)

where υ > ||M−1
0 d||max, E = ˙̃q + (tf − t)q̈d − n ˙̃q

eq̃ −{
2At+B 0 ≤ t ≤ T

0 t > T
and F = q̈d −

˙̃q

Kβ| ˙̃q|β−1 .

4. NUMERICAL SIMULATION

In this section, the performance of the proposed controller
is demonstrated by taking the two-link rigid robotic ma-
nipulator as an example (Cong et al. (2012)). The dy-
namic equation of the manipulator model is given in (1)

with r = 2, where q =

[
θ
ϕ

]
, M =

[
M11(ϕ) M12(ϕ)
M12(ϕ) M22(ϕ)

]
,

G =

[
g1(θ, ϕ)g
g2(θ, ϕ)g

]
, C =

[
−C12(ϕ)(ϕ̇) −C12(ϕ)(θ̇ + ϕ̇)

C12(ϕ)θ̇ 0

]
,

u =

[
u1

u2

]
, ud =

[
ud1

ud2

]
with
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Fig. 1. Angle displacement responses

M11(ϕ) = (m1 +m2)r
2
1 +m2r

2
2 + 2m2r1r2 cos(ϕ)

M12(ϕ) = m2r
2
2 +m2r1r2 cos(ϕ)

M22(ϕ) = m2r
2
2

C12(ϕ) = m2r1r2 sin(ϕ)

g1(θ, ϕ) = (m1 +m2)r1 cos(ϕ) +m2r2 cos(θ + ϕ)

g2(θ, ϕ) = m2r2 cos(θ + ϕ)

The model parameters are selected as l1 = 1m, l2 = 0.8m,
m1 = 0.5kg andm2 = 0.8kg. The parametric uncertainties
of m1 and m2 are assumed to be δm1 = −0.2kg and
δm2 = −0.3kg. Thus, the nominal values of m1 and m2

are m̂1 = 0.3kg and m̂2 = 0.5kg. Furthermore, external
disturbances are given as follows

ud =

[
0.3sin(t+ π/6)
0.2sin(t+ π/3)

]
The initial angle displacements and angular velocities
are θ(0) = 70deg, ϕ(0) = 50deg, θ̇(0) = 20deg/s and

ϕ̇(0) = −20deg/s. The reference signals are given by
θd = ϕd = −π/2 + 0.92(1 − cos(1.26 − t)). Moreover, the
parameters of the controller are selected as follows: n = 3,
T = 1, β = 5/3, K = 10, ϵ = 1e− 3 and υ = 5.

The trajectory tracking processes are depicted in Fig.1-
Fig.4. The desired convergence time tf is chosen as 5s.
Fig.1 shows the output tracking of the angle displace-
ments, Fig.2 presents the tracking process of the angular
velocities, Fig.3 shows the corresponding control signals
and Fig.4 depicts the associated sliding mode manifold re-
sponds. It can be easily observed from Fig.1 and Fig.2 that
the system states are able to track the desired reference
trajectories and the tracking errors converge to zero at
the given finite time tf . Note, from Fig.3, that the control
efforts are smooth and neither singularity nor chattering
is experienced during the control action. Such benefits are
due to the employment of the boundary layer technique
and the choice of n > 2. As can be seen in Fig.4, the
sliding mode manifolds are kept inside the boundary layer
throughout the control action which implies the global
sliding mode turns out to be the global sliding layer and
thus, the existence of tracking errors is inevitable. Howev-
er, the simulation results show that high tracking accuracy
can be guaranteed with a small magnitude of boundary
layer thickness.

For further analysis, the performance of the proposed
control strategy is testified with respect to different n.
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Fig. 2. Angular velocity responses
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Fig. 3. Control torque responses
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The values of n is set to be 3, 4 and 5 respectively. The
associated simulation results are depicted in Fig.5 - Fig.7.
From this set of simulations, we can see that a larger value
of n would lead to a faster convergence rate which coincides
with the statement in Remark 5. Further, from Fig.7,
it is observed that the generated control torques appear
different for t ∈ [0, tf ], however, they perform the same
behavior when t > tf . Such phenomena can be explained
as follows. From (32), it can be found that the expression of
the control efforts for t ∈ [0, tf ] varies with n which would
lead to different control torque responses. Additionally,
since the expression of the control commands at t = tf
is determined by (28), and q and q̇ are equal to their
desired values at that instant, the associated control torque
magnitudes with respect to different n are same with each
other. Consider the control efforts are not affected by n
from tf onwards, they will possess same trajectories.

5. CONCLUSION

A new approach to solve the finite-time control problem
has been addressed in this paper. A key feature of the pro-
posed method is that the tracking errors can be enforced
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Fig. 6. Angle velocity error responses with different n
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Fig. 7. Control torque responses with different n

to zero at a desired finite time in the presence of param-
eter variation and external disturbance. Additionally, the
convergence rate can be tuned by adjusting the parameter
n appropriately. The proposed controller possesses global
robustness and the initial system states are free from
constraints. The finite-time control strategy has been used
for the control design of a rigid robotic manipulator and its
effectiveness has been validated by numerical simulations.
The future work could focus on extending the finite-time
control strategy to high-order system category.
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