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Abstract: This paper addresses the problem ofH∞ andH2 performance analysis of continuous-
time affine single parameter-dependent systems with polynomially parameter-dependent Lya-
punov matrices. First, some necessary and sufficient conditions in terms of linear matrix
inequalities (LMIs) are provided using (D,G) scaling approach. Then, the results are used
to deal with the problem of fixed-order H∞ and H2 controller design via bilinear matrix
inequalities (BMIs) in a nonconservative way. Simulation results demonstrate the effectiveness
of the proposed approach.

1. INTRODUCTION

Robust performance analysis of uncertain linear time in-
variant (LTI) systems using linear matrix inequalities
(LMIs) is a challenging issue in the robust control theory.
The starting point for dealing with this problem is based
on the concept of quadratic stability which considerably
suffers from the conservatism imposed by the use of fixed
Lyapunov matrix (e.g. Palhares et al. [1997]). To improve
the results and reduce the conservatism, special struc-
tures for the Lyapunov matrices have been considered,
such as affine linear parameter-dependent (Feron et al.
[1996], Peaucelle et al. [2000], de Oliveira et al. [2004a,b],
Ebihara and Hagiwara [2006]) and more recently, (ho-
mogeneous) polynomially parameter-dependent Lyapunov
matrices (Chesi et al. [2005a,b], Oliveira and Peres [2005,
2007], Ebihara et al. [2009], Zhang et al. [2010]).

In Ebihara and Hagiwara [2006] and Ebihara et al.
[2009], necessary and sufficient conditions in terms of
LMIs for robust Hurwitz stability analysis of affine
single parameter-dependent matrices with polynomially
parameter-dependent Lyapunov matrices have been pro-
posed. Then, their results have been extended to deal
with the affine multiple parameter-dependent systems and
some sufficient conditions for the existence of the linear
parameter-dependent Lyapunov matrices have been de-
veloped. The proposed results of Ebihara et al. [2009] are
applicable toH∞ performance analysis problem of systems
with an affine single parameter-dependent state matrix A
and parameter-independent matrices (B,C).

In this paper, the problem of H∞ and H2 performance
analysis of continuous-time LTI affine single parameter-
dependent systems is formulated as a set of LMIs by means
of polynomially parameter-dependent Lyapunov matri-
ces. The proposed approach is based on (D,G) scaling

� This research work is financially supported by the Swiss National
Science Foundation under Grant No. 200020-130528.

(Meinsma and Fu [1997], Ebihara [2008], Zhang et al.
[2010]) which can convert inequality conditions depend-
ing on an uncertain parameter, being hence a feasibility
problem of infinite dimension, to finite-dimensional LMIs.
The obtained results can be used to provide some neces-
sary and sufficient conditions in terms of Bilinear Matrix
Inequalities (BMIs) for fixed-order controller design of
affine single parameter-dependent systems. To the best of
our knowledge, this is the first time that such necessary
and sufficient conditions for fixed-order control synthesis
have been developed. The contributions of this work with
respect to Ebihara et al. [2009] are the extension of the
results to

• H∞ performance analysis in the case of the affine sin-
gle parameter-dependent uncertainty in all matrices
A, B, and C;

• H2 performance analysis;
• fixed-order controller design: a BMI-based approach

The organization of the paper is as follows: Section 2
presents some preliminaries and the problem statement.
Sections 3 and 4 are devoted to the main results. The
problem of fixed-order controller synthesis is presented in
Section 5. Simulation examples are given in Section 6. The
paper ends with concluding remarks in Section 7.

The notation used in this paper is standard. In particular,
In and 0n×1 are the n × n identity matrix and the zero
vector of dimension n, respectively. The symbols trace(A),
⊗, and A(i : j, :) denote the trace of matrix A, the
Kronecker product, and the extraction of the ith through
the jth row of matrix A, respectively. The symbol He{A}
is a notation for A+AT . For the simplicity of presentation,
symbol � indicates the symmetric blocks.

2. PRELIMINARIES

Consider a continuous-time LTI affine single parameter-
dependent system as follows:

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6141



ẋ = A(θ)x +B(θ)u

y = C(θ)x
(1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
p. The real matrices A,

B, and C are of appropriate dimensions. It is assumed that
the triplet (A,B,C) belongs to the following uncertainty
domain:

A(θ) = A0 + θA1

B(θ) = B0 + θB1

C(θ) = C0 + θC1

(2)

where θ ∈ [−1, 1], without loss of generality. The assump-
tions about the system are as follows:

• Matrix A(θ) is robustly stable, its eigenvalues lie in
the open left-half plane for all θ ∈ [−1, 1].

• The system is strictly proper which is a reasonable
assumption since all physical systems are strictly
proper. Moreover, it is a necessary assumption to have
a bounded H2 norm.

The transfer matrix from the input u to the output y is
given by:

H(s, θ) = C(θ)(sI −A(θ))−1B(θ) (3)

Lemmas 1 and 2 provide some necessary and sufficient
conditions for the satisfaction of H∞ and H2 norm bounds
of transfer matrix H(s, θ) given in (3).

Lemma 1. (Bounded Real Lemma for continuous-time
systems) The inequality ‖H(s, θ)‖∞ < γ holds for all
θ ∈ [−1, 1] if and only if there exists a symmetric matrix
P (θ) > 0 such that (Boyd et al. [1994]):

A(θ)TP (θ) + P (θ)A(θ) + γ−1C(θ)TC(θ)
+γ−1P (θ)B(θ)B(θ)TP (θ) < 0

(4)

Lemma 2. The inequality ‖H(s, θ)‖22 < υ holds for all
θ ∈ [−1, 1] if and only if there exist symmetric matrices
P (θ) > 0 and Q(θ) > 0 such that (Boyd et al. [1994]):

A(θ)TP (θ) + P (θ)A(θ) + P (θ)B(θ)B(θ)TP (θ) < 0 (5)[
P (θ) C(θ)T

C(θ) Q(θ)

]
> 0

trace(Q(θ))− υ < 0

(6)

It should be noted that P (θ) and Q(θ) in Lemma 1 and
Lemma 2 do not have special structures.

Lemma 3. ((D,G) Scaling) Let Φ ∈ R
n(k+1)×n(k+1).

Then, the following matrix inequality (Zhang et al. [2010]):

(θ[k] ⊗ In)
TΦ(θ[k] ⊗ In) < 0 (7)

where θ[k] =
[
1 θ θ2 · · · θk

]T
, holds for all θ ∈ [−1, 1]

if and only if there exist a positive-definite matrix D ∈
R

nk×nk and a real skew-symmetric matrix G ∈ R
nk×nk

such that:
Φ +∆n

k (D,G) < 0 (8)

where ∆n
k (D,G) ∈ R

n(k+1)×n(k+1) is defined as follows:

∆n
k (D,G) =

[
Īnk
Ĩnk

]T [
D G
GT −D

] [
Īnk
Ĩnk

]
; k �= 0 (9)

where
Īnk = [ Ik 0k×1 ]⊗ In

Ĩnk = [ 0k×1 Ik ]⊗ In
(10)

and ∆n
0 (D,G) = 0. The inequality in (8) is an LMI with

respect to the matrices Φ, D, and G.

3. MAIN RESULTS

In this section, some necessary and sufficient conditions in
terms of LMIs for the existence of a linearly parameter-
dependent Lyapunov matrix P (θ) and Q(θ) given by:

P (θ) = P0 + θP1 (11)

Q(θ) = Q0 + θQ1 (12)
which satisfy (4), (5), and (6), are provided. The main
idea behind of these conditions is (D,G) scaling approach
which can be used to convert the positivity (negativity)
of a polynomial matrix in the following form into the
feasibility problem of some LMIs independent on θ.

J(θ) =

N∑
k=0

θkJk, θ ∈ [−1, 1] (13)

where Jk (k = 0, 1, .., N) are Hermitian matrices.

3.1 H∞ Performance Analysis by Means of Linearly
Parameter-dependent Lyapunov Matrices

In this part, the problem of H∞ performance analysis via
linearly parameter-dependent Lyapunov matrices is pro-
posed and the results are given in the following theorem.

Theorem 1. For an affine single parameter-dependent sys-
tem, the inequality given in (4) holds with P (θ) in (11)
if and only if there exist symmetric matrices P0 and P1,
D > 0, and a real skew-symmetric matrix G of appropriate
dimensions such that:

P0 + P1 > 0

P0 − P1 > 0
(14)

and [
W1 +∆n

2 (D,G) �
Y1 −γIm+p

]
< 0 (15)

where

W1 = He

{[
P0

P1

0

]
[A0 A1 0 ]

}
(16)

Y1 =

[
BT

0 P0 BT
1 P0 +BT

0 P1 BT
1 P1

C0 C1 0

]
(17)

and ∆n
2 (D,G) is given in (9) with k = 2.

The inequality (15) is an LMI with respect to γ and the
matrices P0, P1, D, and G.

Proof: First, the inequalities in (14) imply that Lyapunov
matrix P (θ) in (11) is positive definite. Then, the inequal-
ity given in (4) can be rewritten as follows:

 In
θIn
θ2In



T

Φ∞


 In

θIn
θ2In


 < 0 (18)

where

Φ∞ =He

{[
P0

P1

0

]
[A0 A1 0 ]

}
+ γ−1


CT

0

CT
1
0


 [C0 C1 0 ]

+ γ−1

[
P0B0

P0B1 + P1B0

P1B1

][
P0B0

P0B1 + P1B0

P1B1

]T

(19)
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Based on (D,G) scaling, (18) is equivalent to the following
inequality:

Φ∞ +∆n
2 (D,G) < 0 (20)

The last term in the inequality (19) contains the product
of unknown Lyapunov matrices; therefore, the inequality
(20) is not an LMI. Schur Complement lemma (A. Albert
[1969]) can be applied on (19) to convert it to LMI in (15).
�

3.2 H2 Performance Analysis by Means of Linearly
Parameter-dependent Lyapunov Matrices

The results of H2 performance analysis with linearly
parameter-dependent Lyapunov matrices are presented in
Theorem 2.

Theorem 2. For an affine single parameter-dependent sys-
tem, the inequalities in (5) and (6) hold with P (θ) and
Q(θ) given in (11) and (12), respectively if and only if there
exist symmetric matrices P0, P1, Q0 and Q1, a positive
definite matrix D, and a real skew-symmetric matrix G of
appropriate dimensions such that:[

W1 +∆n
2 (D,G) �

Y1(1 : m, :) −Im

]
< 0 (21)

[
P0 + P1 CT

0 + CT
1

C0 + C1 Q0 +Q1

]
> 0 (22)[

P0 − P1 CT
0 − CT

1
C0 − C1 Q0 −Q1

]
> 0 (23)

trace(Q0 +Q1) < υ

trace(Q0 −Q1) < υ
(24)

where W1 and Y1 are defined in (16) and (17), respectively.

The above inequalities are LMIs with respect to υ and the
matrices P0, P1, Q0, Q1, D, and G.

Proof: The inequality given in (5) can be rewritten as
follows: 

 In
θIn
θ2In



T

Φ2


 In

θIn
θ2In


 < 0 (25)

where

Φ2 =He

{[
P0

P1

0

]
[A0 A1 0 ]

}

+

[
P0B0

P0B1 + P1B0

P1B1

] [
P0B0

P0B1 + P1B0

P1B1

]T (26)

By applying (D,G) scaling approach and then the Schur
Complement lemma on (25), the inequality given in (21)
is obtained.

Inequalities in (6) are linear with respect to θ. Therefore,
they hold for all θ ∈ [−1, 1] if and only if they are satisfied
just for θ = 1 and θ = −1. In this way, the other
inequalities in (22)-(24) result. �

In the sequel, the problem of H∞ and H2 analysis based
on polynomially parameter-dependent Lyapunov matrices
is proposed.

4. EXTENSION TO POLYNOMIALLY
PARAMETER-DEPENDENT LYAPUNOV MATRICES

It has been shown in Bliman [2004] that the inequalities
in (4)-(6) depending continuously on the scalar parameter
θ have polynomial type solutions with respect to θ of the
following form:

PN (θ) =
N∑
i=0

θiPi (27)

QN(θ) =
N∑
i=0

θiQi (28)

with sufficiently high degree N . Therefore, in this section,
we are interested in the extension of the previous results
to polynomially parameter-dependent Lyapunov matrix
PN (θ) and QN (θ). The results are summerized in the fol-
lowing subsections. As the degree of the polynomials P (θ)
and Q(θ) increases, the results converge to the optimal
ones. Finally, necessary and sufficient conditions for the
robust performance analysis of affine single parameter-
dependent systems are derived.

4.1 H∞ Performance Analysis by Means of Polynomially
Parameter-dependent Lyapunov Matrices

Theorem 3. For an affine single parameter-dependent sys-
tem, the inequality in (4) holds with PN (θ) given in
(27) if and only if there exist symmetric matrices Pi for
i = 0, 1, · · · , N , positive definite matrices D and L, and
real skew-symmetric matrices G and K such that:[

WN +∆n
N+1(D,G) �
YN −γIm+p

]
< 0 (29)

−1

2




2P0 P1 · · · Pj−1 Pj

P1 0 · · · 0 Pj+1

...
...

...
. . .

...
Pj−1 0 · · · 0 P2j−1

Pj Pj+1 · · · P2j−1 2P2j


+∆n

j (L,K) < 0 (30)

where

j =




N
2 if N is even

N+1
2 if N is odd

(31)

WN = He







P0

P1

...
PN

0


 [A0 A1 0 · · · 0 ]




(32)

YN =




P0B0 CT
0

P0B1 + P1B0 CT
1

P1B1 + P2B0 0
...

...
PN−1B1 + PNB0 0

PNB1 0




T

(33)

and ∆n
N+1(D,G) is defined in (9) with k = N + 1. Note

that if N is an odd number, 2j = N+1; therefore, P2j = 0
is considered.

Proof: The inequality given in (30) directly expresses
the positivity of matrix PN (θ) based on (D,G) scaling
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approach in two cases where N is either even or odd. The
remaining of the poof is similar to that of Theorem 1. �

4.2 H2 Performance Analysis by Means of Polynomially
Parameter-dependent Lyapunov Matrices

Theorem 4. For an affine single parameter-dependent sys-
tem, the inequalities in (5) and (6) hold with PN (θ)
and QN(θ) given in (27) and (28), respectively if and
only if there exist symmetric matrices Pi and Qi for
i = 0, 1, · · · , N , positive definite matrices D, L, and H
and skew-symmetric matrices G, K, and T such that:[

WN +∆n
N+1(D,G) �

YN (1 : m, :) −Im

]
< 0 (34)

−1

2




2Z0 Z1 · · · Zj−1 Zj

Z1 0 · · · 0 Zj+1

...
...

...
. . .

...
Zj−1 0 · · · 0 Z2j−1

Zj Zj+1 · · · Z2j−1 2Z2j


+∆n+p

j (L,K) < 0

(35)

1

2



2(q0 − υ) q1 · · · qj−1 qj

q1 0 · · · 0 qj+1

...
...

...
. . .

...
qj−1 0 · · · 0 q2j−1

qj qj+1 · · · q2j−1 2q2j


+∆1

j(H,T ) < 0

(36)

where j, WN , and YN are given in (31), (32), and (33),
respectively.

Zi =




[
Pi Ci

T

Ci Qi

]
for i = 0, 1

[
Pi 0
0 Qi

]
for i = 2, . . . , N

(37)

qi = trace(Qi); i = 0, 1, . . . , N (38)

Note that Z2j = 0 and q2j = 0 if N is an odd number.
Proof: The inequalities given in (5) and (6) can be rewrit-
ten in the form of (13) as follows:


In
θIn
...

θN+1In



T

Φ2N




In
θIn
...

θN+1In


 < 0 (39)

−(Z0 + Z1θ + · · ·+ ZNθN ) < 0 (40)

q0 − υ + q1θ + · · ·+ qNθN < 0 (41)

where

Φ2N = WN + Y T
N (1 : m, :)YN (1 : m, :) (42)

Zi and qi for i = 1, · · · , N are defined in (37) and
(38). Then, by applying (D,G) scaling approach to the
inequalities in (39)-(41), the linear matrix inequalities in
(34)-(36) are obtained. �

5. FIXED-ORDER H∞ AND H2 CONTROLLER
DESIGN

Results of Theorem 3 and 4 can be utilized to design fixed-
order dynamic output feedback controllers for affine single

parameter-dependent systems represented by the following
state space realization:

ẋg(t) = Ag(θ)xg(t) +Bg(θ)u(t) +Bw(θ)w(t)

z(t) = Cz(θ)xg(t) +Dzu(θ)u(t)

y(t) = Cgxg(t)

(43)

where the matrices Ag(θ), Bg(θ), Bw(θ), Cz(θ), and
Dzu(θ) belong to the following uncertainty area:

Ag(θ) = Ag0 + θAg1

Bg(θ) = Bg0 + θBg1

Bw(θ) = Bw0 + θBw1

Cz(θ) = Cz0 + θCz1

Dzu(θ) = Dzu0
+ θDzu1

(44)

where θ ∈ [−1, 1]. The signals xg ∈ R
n, u ∈ R

ni , w ∈ R
r,

y ∈ R
no , and z ∈ R

s are the state, the control input, the
exogenous input, the measured output, and the controlled
output, respectively.

The objective is to design a stabilizing dynamic output-
feedback controller satisfying some H∞ and H2 norm
bounds on the transfer function between w and z,
Hzw(s, θ). The fixed-order controller Kc(s) is presented
as follows:

ẋc(t) = Acxc(t) +Bcy(t)

u(t) = Ccxc(t) +Dcy(t)
(45)

where Ac ∈ R
m×m and Bc, Cc, and Dc are of appropriate

dimensions. Then, the closed-loop system Hzw(s, θ) has
the following state space realization:

ẋ(t) = A(θ)x(t) +B(θ)w(t)

z(t) = C(θ)x(t)
(46)

where x(t) = [xg(t) xc(t)]
T and

A(θ) =

[
Ag(θ) +Bg(θ)DcCg Bg(θ)Cc

BcCg Ac

]

B(θ) =

[
Bw(θ)

0

]
C(θ) = [Cz(θ) +Dzu(θ)DcCg Dzu(θ)Cc]

(47)

The closed-loop matrices A(θ), B(θ), and C(θ) belong to
(2); where

A0 =

[
Ag0 +Bg0DcCg Bg0Cc

BcCg Ac

]
;

A1 =

[
Ag1 +Bg1DcCg Bg1Cc

0 0

]
;

B0 =

[
Bw0

0

]
; B1 =

[
Bw1

0

]
;

C0 = [Cz0 +Dzu0DcCg Dzu0Cc];

C1 = [Cz1 +Dzu1DcCg Dzu1Cc]

(48)

Remark: If the matrix Cg belongs to (2) and Bg is fixed, the
same results are obtained; however, the case of uncertainty
in both matrices (Bg, Cg) has not been considered in
this contribution. Inequalities given in (29) and (30) are
necessary and sufficient conditions for fixed-order H∞
controller design. In this case,H∞ performance constraints
are expressed by a set of BMIs by means of polynomially
parameter-dependent Lyapunov matrices.
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Similar to the H∞ control problem, the problem of fixed-
order H2 dynamic output-feedback design of the affine
single parameter-dependent systems described by (43) can
be reformulated as an optimization problem subject to a
set of BMI and LMI constraints in (34)-(36).

To solve optimisation problems involving BMI constraints,
several local and global approaches have been developed
in the literature (e.g. Safonov et al. [1994], Kocvara and
Stingl [2006], Kanev et al. [2004], Dinh et al. [2012]). These
methods can be conveniently employed to solve the BMI
problem of fixed-order controller design proposed in this
paper.

6. SIMULATION EXAMPLES

In this section, three illustrative examples are provided. It
should be noted that LMI problems in the examples are
solved using YALMIP (Löfberg [2004]) as the interface and
SDPT3 (Toh et al. [1999]) as the solver.

Example 1: In this example, the problem of H∞ analysis
of the following stable affine single parameter-dependent
system is considered.

A0 =

[ −4 2 −2
5 −6 1
−2 2 −7

]
; A1 =

[ −5 −3 −13
−5 0 0
10 13 16

]

B0 =
1

10

[
0
1
0

]
; B1 =

1

10

[
1
1
1

]

C0 =
1

10

[
1 0 0

]
; C1 =

1

10

[
1 1 1

]
(49)

The state matrices A0 and A1 are borrowed from Ebihara
and Hagiwara [2006]. They have shown that there does not
exist a linearly parameter-dependent Lyapunov matrix for
the stability analysis of A(θ) = A0+θA1 for all θ ∈ [−1, 1].

By applying a fine griding on θ, the worst case H∞
norm of the system can be computed, ‖H(s, θ)‖∞w.c. =
1.5336. The results of Sections 3 and 4 are applied to
determine the upper bound of H∞ norm of the system
(A(θ), B(θ), C(θ)). The LMI conditions in (14) and (15)
become infeasible by linearly parameter-dependent Lya-
punov matrices. However, the second-degree polynomi-
ally parameter-dependent Lyapunov matrices reach to the
worst case H∞ norm.

Example 2: As the second example, consider the following
system borrowed from de Oliveira et al. [2004a]:

A0 =

[ −0.535 0.455 0.115
−0.085 −0.67 −0.325
0.45 −0.21 −0.17

]

A1 =

[ −0.095 −0.355 0.785
−0.805 −0.03 −0.145
−0.47 0.52 −0.04

]

B0 = B1 =

[
1
0
0

]
; C0 = C1 =

[
0 0 1

]
(50)

The worst case H2 norm of the system is ‖H(s, θ)‖2w.c. =
1.4921 (a fine girding has been used). Table 1 shows
the upper bound of H2 norm of the system (A(θ), B, C)
and the dual system (AT (θ), CT , BT ) with polynomially
parameter-dependent Lyapunov matrices of order N . In
Table 1, the symbol − indicates that the LMIs in (34)-(36)

Table 1. Upper bound of ‖H(s, θ)‖2 in Exam-
ple 2 with polynomially parameter-dependent

Lyapunov matrices of order N

N 0 1 2 3 4

‖H(s, θ)‖2 — 1.7247 1.5052 1.4921 1.4921

‖HT (s, θ)‖2 — 2.3161 1.646 1.4923 1.4921

Table 2. Upper bound of ‖Hzw(s, θ)‖∞ in
Example 3

Method γ Kc

Crusius et al, 1999 9.7315 [0.5558 5.0823]
Shaked, 2003 6.8028 [0.0536 0.6384]

Dong et al, 2013 2.3267 [0.4474 4.1860]
Sadabadi et al, 2013 1.7947 [77.1587 608.8698]

Proposed method with N = 1 1.6602 [130.3463 939.3718]
Proposed method with N = 2 1.6446 [0.1702e3 1.2234e3]

are infeasible with the polynomially parameter-dependent
Lyapunov matrices PN (θ) and QN (θ) of the related order
N .

By increasing the order of polynomially parameter-
dependent matrices PN (θ) and QN(θ) in (27) and (28),
better results are obtained and finally the worst case H2

norm can be reached with PN (θ) and QN(θ) of order
N = 4.

Example 3: Consider the continuous-time polytopic system
with two vertices in Dong and Yang [2013]. The system
can be easily converted to an affine single parameter-
dependent system in (43); where,

Ag(θ) =

[ −1.346 34.065 179.82
0.2424 −1.135 −21.69

0 0 −30

]
+ θ

[
0.356 −16.65 −83.67
0.0223 0.2834 10.3

0 0 0

]

Bg =

[ −91.435
0
30

]
+ θ

[ −6.345
0
0

]
; Bw =

[
0
1
1

]

Cg =

[
1 0 0
0 1 0

]
; Cz =

[
1 0 0
0 1 0
0 0 1

]

Dzu =
[
0 0 0

]
(51)

where θ ∈ [−1, 1]. The objective here is to design a
static output feedback H∞ controller with polynomially
parameter-dependent Lyapunov matrices. To this end, an
optimization problem, which is the minimization of γ
subject to the LMI and BMI constraints in (14) and (15),
should be solved. The BMI constraints are solved by using
PENBMI, version 2.1, (Kocvara and Stingl [2006]) with
initial controller Kc0 = [0 0]. The problem is solved
after 30 iterations (CPU time = 9.823sec). Resulting static
output feedback is given in Table 2.

The results are compared with the LMI-based methods in
Crusius and Trofino [1999], Shaked [2003], Dong and Yang
[2013], Sadabadi and Karimi [2013]. It can be observed
from Table 2 that the proposed BMI-based method in this
paper with polynomially parameter-dependent Lyapunov
matrices of order two leads to the best results among the
others.
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7. CONCLUSION

In this paper, the necessary and sufficient LMI conditions
for H∞ and H2 performance analysis of continuous-time
affine single parameter-dependent systems with polynomi-
ally parameter-dependent Lyapunov matrices have been
proposed. The fundamental idea of the proposed approach
is based on the use of (D,G) scaling which can convert
inequality conditions depending on an uncertain parame-
ter to a set of parameter-independent LMIs. The results
have been employed to develop the necessary and suffi-
cient conditions for fixed-order H∞ and H2 dynamic out-
put feedback controller design for affine single parameter-
dependent systems in terms of BMIs. The extension of
the results to the robust performance analysis/controller
synthesis of affine multi parameter-dependent systems by
linearly parameter-dependent Lyapunov matrices leads to
only sufficient conditions.
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