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Abstract: Collision avoidance for vessels highly depends on a robust obstacle detection. This
is commonly achieved by use of high precision radar sensing. For smaller vessels however, the
use of low-cost sensors is typical. The idea of this work is to improve the robustness of collision
avoidance by integrating a sensor model together with the collision avoidance algorithm in order
to consider the accuracy of the measurements. Furthermore, a target tracking algorithm based
on an interacting Multi-Model Filter (IMM) is used for robust obstacle detection.
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1. INTRODUCTION

Collision avoidance for vessels is an ongoing topic in ma-
rine navigation research. In recent years, a lot of systems
like Automatic Identification System (AIS) and Automatic
Radar Plotting Aid (ARPA) have been developed to sup-
port the ship navigators. Further, a multitude of collision
avoidance algorithms for scenarios on passages with high
ship traffic like the Baltic Sea or the English Channel
have been carried out. Most of these algorithms have been
developed for land based applications, specifically used in
Vessel Traffic Service (VTS) centers. These algorithms use
the AIS information of all vessels in the region of interest to
calculate optimal collision free routes for each vessel. How-
ever, in a lot of areas e. g. inland lakes or coastal regions,
plenty of vessels like recreational crafts operate without
an AIS system. For such scenarios, on-board systems like
ARPA are necessary to detect and track other vessels. An
ARPA system estimates the risk of collision and proposes
avoidance maneuvers to support the navigator. Neverthe-
less, these systems are quit expensive, large, heavy, and
have high power consumption. Thus, they are unqualified
for smaller recreational crafts or small Unmanned Service
Vehicles (USV). The aim of this work is to present an
on-board collision avoidance approach, which detects and
tracks other vessels based on the measurements of a low-
cost radar sensor and to use these tracks to calculate a
collision free path for close range encounter situations.

The presented approach has been developed and tested on
the recreational craft ”Korona”, which is equipped with
a Navico BR24 FMCW radar system, as shown in Fig. 1.
The use of such a small, low-cost and low power consuming
radar qualifies the approach for USVs and recreational
crafts, particularly in regions where AIS carriage is not
required. The test area is the Lake Constance and the
upper Rhine river, where there is no obligation for AIS
carriage. Because of the unavailability of AIS information,
the position, course, speed, and dimensions of other vessels
have to be estimated by radar measurements and addi-

Fig. 1. The vessel Korona from the HTWG Konstanz
equipped with the a Navico BR24 Radar Sensor.

tional algorithms to track the other vessels’ course. For this
purpose, an image preprocessing is used to detect objects
in the radar data. To estimate tracks associated with
these objects, a multiple model object tracking approach
is applied. Based on these tracks, a collision avoidance
algorithm calculates a collision free path in real time. The
algorithm respects the turning circle of the own vessel and
provides a drivable path according to the ”Rules of the
Road” (COLREGs, see (Benjamin et al., 2006)). This path
could be used to support the vessel navigator or to guide
the vessel automatically.

In the last decades a multitude of algorithms concerning
collision avoidance for vessels have been carried out. An
overview of the approach until 2009 is given in (Statheros
et al., 2008; Tam et al., 2009). Referring to Tam et al.
(2009), the most promising approach is an evolutionary
algorithm presented by Smierzchalski (1999) but the most
practical and efficient approach is the grid-based method
from Szlapczynski (2006). Nowadays, the algorithm for
collision avoidance can by divided in two groups. The first
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Fig. 2. Raw radar image (left) and extracted radar targets
(right). The colored targets are dolphins or ships. The
gray areas are considered to be part of the shore line
and will not be used for target tracking.

one consists of approaches which are developed to optimize
the vessel’s routes by land-based stations like Vessel Traffic
Services (VTS). Most of these algorithms are based on
the approach of Smierzchalski (1999) and use heuristic
optimization methods to find optimal collision free routes.
The most promising approach, therefore, is the hybrid
algorithm presented in (Szlapczynski and Szlapczynska,
2012). The second group comprises of methods that are
used on-board the vessels. These methods use discrete
grids to calculate a collision free path as presented in
(Szlapczynski, 2006). Kuwata et al. (2013) presented an
approach based on a velocity space grid. They also showed
some results of actual on-water tests for multi vessel
scenarios. In this work, the collision avoidance algorithm
presented in (Blaich et al., 2012a,b) is used to perform real
on-water test.

2. RADAR DATA PREPROCESSING

The Navico BR24 FMCW radar system is an imaging
sensor which provides a 360◦ echo image of the environ-
ment every 2.5s. The image consists of 2048 range scans
(spokes), one spoke approx. every 0.2◦ but with an opening
beam width of 5.2◦(3dB). Each spoke itself is split in 1024
resolution cells, whose occupancy is indicated by a 4-bit
value. The maximum range is configurable from 60m up
to 32nmi. For the collision avoidance on inland waters we
focused our work on a maximum range of about 800m. An
example is shown in Fig. 2. Each time, an image has been
received, the target extraction is performed in three steps:
first an ego motion compensation, second a cell based
occupancy likelihood determination and third a connected
component labeling.

2.1 Ego Motion Compensation

In a first step, the effects of the own vessel’s yaw rate
is compensated. This is done by calculating the azimuth
of each scan in respect to the corresponding own vessel
heading. The own vessel moves with low speed, only.
Changes in the absolute position of the sensor are small
during one scan and will be corrected in the tracking
system.

2.2 Occupancy Likelihood Determination

Second, the occupancy likelihood of each resolution cell
is determined. Because of the rather large beam width,
in one spoke, several cells are affected for each range
step. The returned energy to the radar is the sum of
the energy reflected from all those cells. However, the
reported amplitude is zero or maximum most of the time,
and therefore, of rather little use. Thus, for any value
greater than zero, a cell is assumed to be reported as
occupied. Based on the antenna beam width, we assume
each cell becomes illuminated say n times during a 360◦-
scan. Furthermore, we assume that for each spoke the
probability p of a cell being reported as occupied is
independent and constant. Thus, the occupancy likelihood
is binomially distributed and can be calculated by

Pr(ai,j = occ) =

m∑
k=0

(
n

k

)
pk(1− p)n−k, (1)

where

m =

bn/2c∑
l=b−n/2c

ai,j+l. (2)

Here, ai,j ∈ [0, 1] denotes the reported occupancy value
of each cell, i is the cell index in range and j in azimuth,
respectively.

2.3 Connected Component Labeling

Finally, a cell is assumed to contain a target, if the
occupancy probability is greater than 0.5. Since a target
usually extends of several hundred cells, adjacent, occupied
cells are grouped using connected component labeling
(Gonzalez and Woods, 2006). Each group is considered to
be a target of elliptical shape, for which range and azimuth
of the center, its total size, cross range (distance between
minimum and maximum bearing) and down range extends
(distance between minimum range and maximum range)
are calculated. The origin of each target is also verified
using a map, which was obtained previously, by extracting
the shore line from each radar scan (Greuter et al., 2012).
Targets that are not located on the water are suppressed,
and the remaining targets form the input of the Multi
Object Tracking (Fig. 2).

3. TRACK FILTERING USING IMM

The extracted target positions are still very noisy, thus,
strong low pass filtering is required to obtain an object’s
true position, heading, and velocity. Using just one dy-
namic model for straight line motion can lead to large
estimation errors or even track loss during a turning ma-
neuver. Using only one model for maneuvering targets can
lead to poor state estimates when the object keeps its
heading. Therefore, an interacting multiple model (IMM)
filter is chosen here. The basic idea of this filter is to
run several models in parallel. Based on the estimate of
each model and the current measurement, a likelihood for
each model to reflect the true motion state is determined.
The output of the filter is a weighted sum of all model
estimates. Since the IMM has been used in target tracking
for many years, only the used models and parameters are
explained here. For implementation details the reader is
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referred to Challa et al. (2011).

For each object on the water, three models of the form

x
(i)
k = f

(i)
k

(
x

(i)
k−1

)
+ G

(i)
k w

(i)
k (3)

are assumed. Here x
(i)
k is the state vector of the ith model

and f
(i)
k describes the corresponding system dynamics. w

(i)
k

is a white noise sequence with zero mean and covariances

cov[w
(i)
k ] = Q(i), G

(i)
k serves as an input matrix and

describes the interaction of the noise components with the
states. For prediction and measurement update of each
model, the Unscented Kalmanfilter is used (Julier and
Uhlmann, 2004). The models become time dependent due
to non constant sampling rate.

3.1 Dynamic Models

In the following, the dynamic models considered in this
study are explained briefly. Details concerning these mod-
els can be found in Li and Jilkov (2003).

As straight line motion model the Constant Velocity(CV)
model is applied. The state vector x(1) = (x, ẋ, y, ẏ)′,
where x denotes the position along the own vessel lon-
gitudinal axis and y the lateral axis. The process noise

Q(1) = diag[σ2
x, σ

2
y] reflects very small acceleration in both

direction.

The second model, used for maneuvering, is the Constant
Turn Rate and Velocity (CTRV) model. Here, the state
x(2) = (x, y, ψ, ω, V )′ contains besides the position, the
yaw angle ψ, turn rate ω. and the overall velocity V .
It was already shown by Gertz (1989) that estimating
the heading angle directly leads to better results during
a maneuver than estimating the corresponding velocity
directions. This model assumes that yaw rate and velocity

are nearly constant, with Q(2) = diag(σ2
V , σ

2
ω).

The last model is a Constant Acceleration (CA) model
with state x(3) = (x, ẋ, ẍ, y, ẏ, ÿ)′. This model serves as a
transition model, when the motion changes from straight
line to constant turn or fast velocity changes occur. It uses
the same process noise expressions like the CV, but with
higher values for the variances.

3.2 Measurement Model

Since the utilized radar does not provide any Doppler
information, only the polar position measurements can be
used for updating the dynamic models. The measurement
equation is given by

zk =

[
r
θ

]
= h (xk) + vk =

{ √
x2 + y2

arctan(y/x)
+ vk (4)

Here, vk is also normally distributed with zero mean and
covariance R = diag[σ2

R, σ
2
θ ].

For a collision avoidance system the size of an object is
of critical importance. In Salmond and Parr (2003) a fifth
state is added to the CV model defining the length of an
object. It is assumed that all objects are of elliptical shape
with a fixed aspect ratio γ of major and minor axis. Thus,

the relationship between the measured down range LDR
and the object length l is defined as

LDR(φ) = l

√
cos2(φ) + γ2 sin2(φ), (5)

where the aspect angle φ = ψ − θ is the difference of
object heading and measured azimuth. However, for our
system, the measured down range is overestimated most
of the time and shows only little dependency on the aspect
angle. Thus, we do not incorporate the object length in
our dynamic models, but update the length estimate with
a constant gain on every scan independently. The same
is done for the extracted size of the target, which is used
for data association only. Due to the high antenna beam
width, cross range values are in general too large to be
of any use. When a new measurement is available, each
model is updated according to the rules of IMM. Based
on the individual filter residuals, a new model likelihood
is determined. The final state and uncertainty estimate
is then given by the weighted sum of all models. Finally,
the components of the object state necessary for the most
likely model are provided for the path planning module,
together with the length and the maneuvering likelihood.

4. TRACK HANDLING

One of the major challenge in a multi object tracking
application still is the data association problem. In general,
it is unknown which measurement was originated from
which object, even the cardinality of objects is not known
a priori. Especially when working with a radar on water,
additional measurements occur which do not belong to any
real object (clutter), or an existing object is not detected at
all. To solve these problems, a large variety of algorithms
have been proposed. These can be roughly divided into
two groups. The first group is comprised of single instance
filters. The states of all objects are collected in one set.
This set is regarded as a new state space and is updated
using one Bayes filter. The second group uses at least one
filter instance for each object. For these filters, an explicit
measurement to object association has to be performed.
Here also a large number of algorithms have been designed
for different applications and conditions.

For the presented application the following assumptions
are valid:

• One object creates just a single measurement.
• Object trajectories can be in close proximity.

Because of these assumption, the Joint Probabilistic Data
Association (JPDA) is selected, Bar-Shalom et al. (2005).
The JPDA associates all measurements within a gate to a
track subject to all other tracks in this gate. To use the
JPDA, first the assignment matrix A ∈ RMm×Mt has to
be calculated which contains for each measurement/track
pair the conditional measurement data likelihood. Mm

and Mt are the number of measurements that fall in
the gate, number of tracks in the gate, respectively. For
measurement i and track j the association likelihood is
assumed to be Gaussian distributed:

aij = N (zi, h(xj),Sj) i ∈ {1, . . . ,Mm}, j ∈ {1, . . . ,Mt}
(6)

The innovation covariance Sj is the sum of the current
track position covariance and the constant measurement
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covariance. If the value is below some gating threshold,
the likelihood is zero. Then, A has to be expanded for
each track by the likelihood of a missed detection, and
for each measurement the likelihood of false alarm or new
object likelihood has to be taken into account. Then, the
joint association likelihood is given by

p(aij) = aij
per(Aīj)

per(A)
(7)

where the permanent is the sum of products over all
permutations:

per(A) =

n∑
i=1

aijper(Aīj) (8)

and Aīj is the submatrix obtained by removing row i and
column j. The computation of all permanents can still
be very time consuming. For this reason, they are here
replaced by an approximation. In Uhlmann (2008) various
approximation schemes are compared with respect to their
assignment correctness. Based on these results, here the
approximation

per(A) ≤
n∏
i=1

n∑
j=1

aijci
cj

(9)

is adopted, where cj is the sum of column j. Based on
this aproximation, an optimal assignment approach is used
to find the measurement to track update pairing. Not
assigned measurements are used as candidates for new
tracks in the next update step.

5. COLLISION AVOIDANCE

The collisions avoidance algorithm uses the track informa-
tion and the most probable model provided by the IMM
filter to predict the movement of the other vessels over
a future time period. If the CTRV model is the most
probable, the motion of the other vessel is predicted as
an arc, otherwise it is predicted as a straight line. This
information is used by the collision avoidance algorithm
to find a safe path in close range encounter situations.
The algorithm is divided in two steps. In the first step,
a set of waypoints for a collision free path is estimated
in the local area. The size of this local region depends on
the sensor’s range. This algorithm is presented in detail
in (Blaich et al., 2012a,b), thus, only a short overview of
the algorithm is given in this section. In a second step the
waypoints are connected by Bezier splines to get a path
that is navigable by the vessel.

The algorithm for the waypoint search uses the own vessel
speed and course information to predict the own movement
while traveling the local area. To predict the movement of
the other vessels, the information provided by the tracking
algorithm is used. Both informations are stored in a grid
to calculate the cost of a path. If map data is available
this information is also stored in the same grid. To find
a collision free path in this grid an A∗ search is used. To
consider the own ship kinematic constraints, a special T-
shape neighborhood is implemented. This neighborhood
only considers those cells for the next search step that
are actually reachable by the vessel. For the other ships,
a ship domain as presented by Goodwin (1975) is used
to prefer COLREGs compliant avoidance maneuvers. The
usage of the grid and the A∗ search enables the real-time

capability of the waypoint search, which is necessary for
on-board systems.

For connecting the waypoints, Bezier splines are used in
such a way that the path segments are interconnected
with continuous curvature. Thus, a smooth transition
between the segments is assured. Moreover, since the path
planning algorithm already takes into account the vessel
kinematics, the Bezier splines provide a continuous path
with admissible curvature.

6. EXPERIMENTAL RESULTS

In order to evaluate the performance of the tracking al-
gorithm and to test the usability for collision avoidance,
several live, on-water tests have been performed. The
recreational craft Solgenia, as shown in Fig. 3, was used
as target vessel. The target vessel performs different ma-

Fig. 3. The target vessel Solgenia used for on-water track-
ing tests.

neuvers in different environments for parameter estimation
of the tracking system, Fig. 4. Therefore, both ships are
equipped with low-cost GPS-receivers. The extracted tar-
get trace from the tracking system is compared with the
GPS trace using the simple cost function

J =
1

N

N∑
k=1

(x̂k − xk)
T
R−1
GPS (x̂k − xk) , (10)

where N is the number of radar scans, x̂k the estimated
and xk the measured target state at time k in CV -
representation, and RGPS the GPS measurement noise.
In the first step, the process noise parameters have been
optimized using the target trajectory and simulated mea-
surement data. For each parameter set, 50 Monte Carlo
runs with fixed measurement noise have been performed,
and the mean of the cost function has been evaluated.

In the second step, the measurement noise terms of the
tracking system have been adjusted using the radar data
from one data set. The obtained parameters have been
validated against a second data set. The adjustment was
made under the constraint that no track loss occurs.

CV CTRV CA Sensor

σx=0.003m/s2 σV =0.07m/s σx=0.06m/s2 σR=1.2m

σy=0.003m/s2 σω=0.5◦/s σy=0.06m/s2 σθ=1.8◦

The total position error is shown in Fig. 5. It has to
be noted that for evaluation of the global coordinates of
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Fig. 4. Trajectory of target vessel and own vessel with all
received radar detections

Fig. 5. Horizontal position deviation track trace to GPS
trace

Fig. 6. Velocity and Heading of track and GPS with
corresponding model likelihoods.

the track and measurement also very accurate information
of the own ship heading is required. Since the utilized
compass has a standard deviation of greater than two
degree, the absolute position error inclines if the distance
between the target vessel and the own vessel is large. This
effect dominates the RMSE calculation, thus the deviation
between measurements and filtered solution is small.

For a collision avoidance system, the accuracy of heading
and velocity of an obstacle is as important as its position.
These accuracies and the models’ likelihoods are presented
in Fig. 6. These results show that the CV-Model and
the CTRV-Model have similar likelihoods in straight line
motion. This may be due to the fact that in this case small
yaw rates still exits (Fig. 7). The accuracy during a typical
90◦ turning maneuver is shown in Fig. 8.

When fast maneuvers occur, e.g. during a small circle Fig.
9, none of the models can estimate velocity and heading
accurately. This is mainly due to the low sensor update
rate and accuracy in comparison to the possible target

Fig. 7. States during straight line motion

Fig. 8. States during typical turning maneuver

Fig. 9. States during fast circle

dynamics. The estimated length of the target vessel has
a mean of 12.4m, where the true length is 8.2m. This
accuracy is still sufficient for CA and a general distinction
of target vessels into different groups like leisure boats or
ferries.

The results of some close range encounter situations which
will cause a collision if no avoidance maneuver is performed
are shown in Fig. 10. The own vessel is depicted as red
arrow, and the own course as blue line. For the other
vessels and their predicted paths, a brown arrow and a
brown line is used. The path provided by the algorithm
to avoid a collision is plotted in green. An example for

(a) Straight target motion (b) Target in turning manoeuver

Fig. 10. Resulting path provided by the collision avoidance
algorithm.
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(a) (b) (c) (d)

Fig. 11. Sequence of calculated paths and executed trajectory for a complete evasive maneuver.

a scenario with a straight motion of the other vessel is
shown in Fig. 10a, and an example with a turning motion
is depicted in Fig. 10b. For the straight line motion,
a sequence of calculated trajectories for the full evasive
maneuver is shown in Fig. 11. The path taken by the own
vessel is indicated in red. After the first encounter Fig. 11a,
for each new measurement, a new trajectory is calculated,
e.g. Fig. 11b,11c. Only small corrections from the initial
path have to be made. The calculation of the collision point
is stable, Fig. 11d.

7. CONCLUSION

In this paper, a case study of a collision avoidance system
with low-cost sensors has been shown. The implemented
tracking system is fast, and the track has proven to be
stable over a long time. The achieved accuracy in position,
heading and velocity is sufficient for the used collision
avoidance system, however, it could be significantly im-
proved if better heading estimates would be available.
Although the absolute position accuracy is low, it should
be noted that for the collision avoidance just the relative
position to the own vessel is of importance, thus inaccurate
compass and GPS resolution have minor impact on the
performance of the algorithm. The suggested CA approach
is quite insensitive to the remaining noise of the track
inputs. Yet, further research is ongoing to incorporate
also the covariances of the tracks in the target motion
prediction.
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